Стр. 1

Алюминиевый сплав — сплав, основной массовой частью которого является алюминий. Самыми распространенными элементами в составе алюминиевых сплавов являются: медь, магний, марганец, кремний и цинк. Все алюминиевые сплавы можно разделить на две основные группы: термически обработанные и термически не обработанные. Большая часть производимых сплавов относится к деформируемым, которые предназначены для последующей ковки и штамповки.

Основные примеси в алюминии — железо и кремний. Они входят в состав алюминия примерно в равных количествах — от сотых до десятых долей процента. Железо в твердом алюминии практически не растворяется. Железо во всех сплавах алюминия является вредной примесью, так как оно снижает электропроводность и коррозионную стойкость сплавов и ухудшает их пластические свойства. Исключение составляют жаропрочные сплавы, в которых железо — примесь полезная. Кремний растворим в железе при комнатной температуре в количестве не более 0,12 %; при 570 °C растворимость его достигает 1,6 %. Влияние кремния на механические и физико-химические свойства алюминия подобно железу. Для сплавов алюминия характерно, что в результате добавок менее коррозионностойких металлов получаются сплавы высокой коррозийной стойкости (например, с 3—5 % Mg, сплавы с марганцем и кремнием) и, наоборот, если данный металл более устойчив против коррозии, чем алюминий, то сплавы получаются низкой коррозионной стойкости (например, Аі—Си).

Основные недостатки алюминиевых сплавов — относительно низкая упругость, высокий коэффициент линейного расширения, сравнительная сложность выполнения соединений из-за ограниченной применимости сварки алюминиевых сплавов, так как прочность сварных швов, особенно у термически упрочняемых сплавов, ниже прочности основного металла. К недостаткам сплавов относятся также низкая выносливость в условиях переменных и знакопеременных нагрузок и пока еще довольно высокая стоимость. Однако последний недостаток является временным, так как по мере совершенствования технологии стоимость полуфабрикатов из алюминиевых сплавов будет постепенно снижаться.

Обозначение деформируемых алюминиевых сплавов.

Американская система обозначений алюминиевых сплавов является наиболее распространенной. Для алюминиевых деформируемых сплавов применяются буквенно-цифровые обозначения, состоящие из двух частей. Первая часть содержит четыре цифры и обозначает марку сплава. Все сплавы делятся на серии.

Первая цифра обозначает тип сплава по его основной добавке:

- 1 алюминий чистоты 99% и выше,
- 2 медь,
- 3 марганец,
- 4 кремний,
- 5 магний,
- 6 магний и кремний,
- 7 цинк,
- 8 другие элементы, отличные от вышеуказанных,
- 9 неиспользуемая цифра.

Если вторая цифра в обозначении – ноль, это указывает, что нет особого контроля за каждым элементом примеси, а цифры от 1 до 9 указывают на особый контроль по одной или нескольким

Стр. 2

примесям. В сплавах серии 1000 для алюминия чистоты 99% и выше две последние цифры обозначают добавочные сотые доли процентов чистоты. Например, 1030 обозначает алюминий чистоты 99.30%. В сплавах серий от 2000 до 8000 две последние цифры не имеют самостоятельного значения. Они используются для того, чтобы обозначить различные сплавы в данной серии.

Вторая часть обозначения — это буквенно-цифровой код состояния материала. Буквы записываются после цифр, обозначающих марку сплава.

Основные обозначения:

- F без термической обработки;
- О отожженный, рекристаллизованный;
- Н нагартованный;
- Т термически обработанный;
- W тепловая обработка в «твердом растворе».

После символа – Н обычно следуют две или три цифры. Первая цифра обозначает вид операции:

- Н1 только нагартованные;
- Н2 нагартованные и частично отожженные;
- Н3 нагартованные и стабилизированные.

Вторая цифра обозначает степень твердости:

- 2 четвертьтвердые;
- 8-твердые;
- 4- полутвердые;
- 9 особотвердые.

Третья цифра, если использована в обозначении, обозначает степень контроля состояния материала.

После символа Т обычно следуют одна или несколько цифр. Первая цифра обозначает вид и последовательность обработки:

- Т1 естественное старение;
- Т2 холодная обработка и естественное старение;
- T3 термообработка в «твердом растворе», холодная обработка и естественное старение;
- T4 термообработка в «твердом растворе» и естественное старение;
- T5 искусственное старение;
- Т6 термообработка в «твердом растворе» и искусственное старение;
- T7 термообработка в «твердом растворе» и стабилизация;
- Т8 термообработка в «твердом растворе», холодная обработка и искусственное старение;
- T9 термообработка в «твердом растворе», искусственное старение и холодная обработка;
- Т10 холодная обработка и искусственное старение.

Добавочные цифры обозначают вариации в обработке и способы снятия внутренних напряжений.

Характеристики серий алюминиевых сплавов

Серия 1000. Технический алюминий. В этой серии основные примеси – железо и кремний. Сплавы этой группы обладают высокой тепло- и электропроводностью, высоким сопротивлением коррозии, низкой механической прочностью и хорошей обрабатываемостью. Небольшое повышение прочности может быть достигнуто нагартовкой.

Серия 2000. Основной легирующий элемент в этой серии – медь. Для получения оптимальных

Стр. 3

механических свойств сплавы этой серии упрочняются термической обработкой; механические свойства подобны или даже превосходят свойства низкоуглеродистой стали. Искусственное старение еще более повышает механическую прочность. Сплавы этой серии не обладают такой высокой коррозионной стойкостью, как другие алюминиевые сплавы, и в некоторых условиях подвержены межкристаллической коррозии. Поэтому листы из этих сплавов обычно плакируются чистым алюминием или сплавами серии 6000, что обеспечивает гальваническое предохранение основного металла и повышает коррозионную стойкость. Самый известный сплав этой серии — сплав марки 2024, который очень широко применяется в авиастроении.

Серия 3000. В сплавах этой серии основная добавка — марганец. Эти сплавы не упрочняются термической обработкой. Поскольку добавка марганца не превышает 1.5 процента, имеется немного разновидностей сплавов в этой серии. Широко распространен сплав марки 3003, характеризующийся средней прочностью и хорошей обрабатываемостью.

Серия 4000. Основной легирующий элемент в сплавах этой серии – кремний, который добавляется в значительных количествах для того, чтобы существенно понизить точку плавления. Поэтому сплавы этой серии используются как проволока для сварки и пайки.

Серия 5000. В сплавах этой серии основная добавка — магний. Магний повышает прочность сплавов от умеренной до высокой, не уменьшая пластичности. Сплавы этой серии обладают хорошими сварочными свойствами и хорошей коррозионной стойкостью в морской атмосфере. Сплавы этой серии не подвергаются термической обработке.

Серия 6000. Сплавы этой группы содержат кремний и магний в количествах, необходимых для образования силицида магния, что обеспечит способность к термообработке. Сплавы этой серии характеризуются средней прочностью, высокой коррозионной стойкостью и хорошей способностью к формообразованию. Главный сплав в этой серии — сплав 6061, один из самых распространенных термообрабатываемых сплавов.

Серия 7000. В сплавах этой группы основная добавка — цинк, который в паре с меньшим количеством магния обеспечивает очень высокую прочность после термической обработки. Наиболее известен сплав 7075, который является одним из самых высокопрочных алюминиевых сплавов и используется в каркасах и других высоконагруженных элементах самолетов.

Назначение алюминиевых деформируемых сплавов.

Сплавы, не подвергаемые термической обработке:

Серия сплава	Марка сплава	Применение	
1xxx	1060	Химическое оборудование, цистерны	
	1100	Посуда, изделия из листа, декоративные изделия	
	1350	Электрические привода	
Зххх	3003	Химическое и пищевое оборудование, резервуары,	
	3004	теплообменники, изделия из листа	
5xxx	5005	Декоративные элементы автомобилей, архитектурные элементы, анодированные изделия	
	5050		
	5052		
	5657		
5xxx (3% Mg)	5083	Судостроение, сварные конструкции, резервуары, сосуды под давлением, криогенная техника	
	5086		
	5454	7	
	5456	7	

Стр. 4

Сплавы, упрочняемые термической обработкой:

Серия сплава	Марка	Применение	
	сплава		
2xxx (Al-Cu)	2011	Детали, обрабатываемые резанием	
	2219	Конструкционный материал, работа при высоких температурах	
2xxx (Al-Cu-Mg)	2017	Детали, обрабатываемые резанием. Сплав обладает более высокой прочностью и лучшей свариваемостью, чем 2011	
	2014	Детали и конструкции самолетов, авиадвигатели, колеса автомобилей, рамы грузовых автомобилей	
	2024		
	2618		
4xxx	4032	Поршни, детали автомобилей, авиакосмическая тегшхника,	
		электронная техника	
6ххх	6020	Поршни, клапаны, детали гидравлики, электронная техника	
	6262		
	6013	Детали средней прочности, конструкции, кабины и рамы	
	6060	грузовых автомобилей, судостроение, архитектурные элементы, мебель, фасады, окна, двери	
	6061		
	6063		
7xxx (Al-Zn-Mg)	7004	Конструкционный материал, криогенная техника	
	7005		
7xxx (Al-Zn-Mg-Cu)	7001	Высокопрочные конструкции и детали самолетов	
	7068		
	7075		
	7178		

Стр. 5

Аналоги деформируемых алюминиевых сплавов по стандартам различных стран:

США, АА	Германия, DiN	Россия, ГОСТ	iSO R209
1060	Х	Х	Al99.6
1100	x	x	Al99.0Cu
1350	E-A1995	A00; A0	E-Al99.5
2011	AlCuBiPb	Х	AlCu6BiPb
2014	AlCuSiMn	АЧ-2Ф	AlCu4SiMg
2017	AlCuMg1	Д1; Д7	AlCu4MgSi
2024	AlCuMg2	Д16;Д16А	AlCu4Mg1
2219	x	Χ	AlCu6Mn
2618	х	AK4-1	x
3003	x	АМц	AlMn1Cu
3004	x	X	AlMn1Mg1
4032	х	AK-9	Х
4043	AlSi5	AK	AlSi5
4343	x	Х	X
5005	х	Х	AlMg1(B)
5050	x	Х	AlMg1.5(C)
5052	x	АМг	AlMg2.5
5083	AlMg4.5Mn	Χ	AlMg4.5Mn0.7
5086	x	X	AlMg4
5454	x	АМгА	AlMg3Mn
5456	x	45Мг2	AlMg5Mn
5657	x	X	X
6013	x	Х	X
6020	x	Χ	X
6061	x	Х	AlMg1SiCu
6063	AlMgSi0.5	АД 31	AlMg0.7Si
6262	X	x	AlMg1SiPb
7005	X	Х	AlZn4.5Mg1.5Mn
7068	Х	Х	X
7075	AlZnMgCu1.5	B 95	AlZn5.5MgCu
7178	х	Х	AlZn7MgCu

^{*}х-аналога нет;

^{**}таблица для ознакомительных целей